← Back to Personal Development

personal-genomics

Comprehensive local DNA analysis with across

0
Source Code

Personal Genomics Skill v4.2.0

Comprehensive local DNA analysis with 1600+ markers across 30 categories. Privacy-first genetic analysis for AI agents.

Quick Start

python comprehensive_analysis.py /path/to/dna_file.txt

Triggers

Activate this skill when user mentions:

  • DNA analysis, genetic analysis, genome analysis
  • 23andMe, AncestryDNA, MyHeritage results
  • Pharmacogenomics, drug-gene interactions
  • Medication interactions, drug safety
  • Genetic risk, disease risk, health risk
  • Carrier status, carrier testing
  • VCF file analysis
  • APOE, MTHFR, CYP2D6, BRCA, or other gene names
  • Polygenic risk scores
  • Haplogroups, maternal lineage, paternal lineage
  • Ancestry composition, ethnicity
  • Hereditary cancer, Lynch syndrome
  • Autoimmune genetics, HLA, celiac
  • Pain sensitivity, opioid response
  • Sleep optimization, chronotype, caffeine metabolism
  • Dietary genetics, lactose intolerance, celiac
  • Athletic genetics, sports performance
  • UV sensitivity, skin type, melanoma risk
  • Telomere length, longevity genetics

Supported Files

  • 23andMe, AncestryDNA, MyHeritage, FTDNA
  • VCF files (whole genome/exome, .vcf or .vcf.gz)
  • Any tab-delimited rsid format

Output Location

~/dna-analysis/reports/

  • agent_summary.json - AI-optimized, priority-sorted
  • full_analysis.json - Complete data
  • report.txt - Human-readable
  • genetic_report.pdf - Professional PDF report

New v4.0 Features

Haplogroup Analysis

  • Mitochondrial DNA (mtDNA) - maternal lineage
  • Y-chromosome - paternal lineage (males only)
  • Migration history context
  • PhyloTree/ISOGG standards

Ancestry Composition

  • Population comparisons (EUR, AFR, EAS, SAS, AMR)
  • Admixture detection
  • Ancestry informative markers

Hereditary Cancer Panel

  • BRCA1/BRCA2 comprehensive
  • Lynch syndrome (MLH1, MSH2, MSH6, PMS2)
  • Other genes (APC, TP53, CHEK2, PALB2, ATM)
  • ACMG-style classification

Autoimmune HLA

  • Celiac (DQ2/DQ8) - can rule out if negative
  • Type 1 Diabetes
  • Ankylosing spondylitis (HLA-B27)
  • Rheumatoid arthritis, lupus, MS

Pain Sensitivity

  • COMT Val158Met
  • OPRM1 opioid receptor
  • SCN9A pain signaling
  • TRPV1 capsaicin sensitivity
  • Migraine susceptibility

PDF Reports

  • Professional format
  • Physician-shareable
  • Executive summary
  • Detailed findings
  • Disclaimers included

New v4.1.0 Features

Medication Interaction Checker

from markers.medication_interactions import check_medication_interactions

result = check_medication_interactions(
    medications=["warfarin", "clopidogrel", "omeprazole"],
    genotypes=user_genotypes
)
# Returns critical/serious/moderate interactions with alternatives
  • Accepts brand or generic names
  • CPIC guidelines integrated
  • PubMed citations included
  • FDA warning flags

Sleep Optimization Profile

from markers.sleep_optimization import generate_sleep_profile

profile = generate_sleep_profile(genotypes)
# Returns ideal wake/sleep times, coffee cutoff, etc.
  • Chronotype (morning/evening preference)
  • Caffeine metabolism speed
  • Personalized timing recommendations

Dietary Interaction Matrix

from markers.dietary_interactions import analyze_dietary_interactions

diet = analyze_dietary_interactions(genotypes)
# Returns food-specific guidance
  • Caffeine, alcohol, saturated fat, lactose, gluten
  • APOE-specific diet recommendations
  • Bitter taste perception

Athletic Performance Profile

from markers.athletic_profile import calculate_athletic_profile

profile = calculate_athletic_profile(genotypes)
# Returns power/endurance type, recovery profile, injury risk
  • Sport suitability scoring
  • Training recommendations
  • Injury prevention guidance

UV Sensitivity Calculator

from markers.uv_sensitivity import generate_uv_sensitivity_report

uv = generate_uv_sensitivity_report(genotypes)
# Returns skin type, SPF recommendation, melanoma risk
  • Fitzpatrick skin type estimation
  • Vitamin D synthesis capacity
  • Melanoma risk factors

Natural Language Explanations

from markers.explanations import generate_plain_english_explanation

explanation = generate_plain_english_explanation(
    rsid="rs3892097", gene="CYP2D6", genotype="GA",
    trait="Drug metabolism", finding="Poor metabolizer carrier"
)
  • Plain-English summaries
  • Research variant flagging
  • PubMed links

Telomere & Longevity

from markers.advanced_genetics import estimate_telomere_length

telomere = estimate_telomere_length(genotypes)
# Returns relative estimate with appropriate caveats
  • TERT, TERC, OBFC1 variants
  • Longevity associations (FOXO3, APOE)

Data Quality

  • Call rate analysis
  • Platform detection
  • Confidence scoring
  • Quality warnings

Export Formats

  • Genetic counselor clinical export
  • Apple Health compatible
  • API-ready JSON
  • Integration hooks

Marker Categories (21 total)

  1. Pharmacogenomics (159) - Drug metabolism
  2. Polygenic Risk Scores (277) - Disease risk
  3. Carrier Status (181) - Recessive carriers
  4. Health Risks (233) - Disease susceptibility
  5. Traits (163) - Physical/behavioral
  6. Haplogroups (44) - Lineage markers
  7. Ancestry (124) - Population informative
  8. Hereditary Cancer (41) - BRCA, Lynch, etc.
  9. Autoimmune HLA (31) - HLA associations
  10. Pain Sensitivity (20) - Pain/opioid response
  11. Rare Diseases (29) - Rare conditions
  12. Mental Health (25) - Psychiatric genetics
  13. Dermatology (37) - Skin and hair
  14. Vision & Hearing (33) - Sensory genetics
  15. Fertility (31) - Reproductive health
  16. Nutrition (34) - Nutrigenomics
  17. Fitness (30) - Athletic performance
  18. Neurogenetics (28) - Cognition/behavior
  19. Longevity (30) - Aging markers
  20. Immunity (43) - HLA and immune
  21. Ancestry AIMs (24) - Admixture markers

Agent Integration

The agent_summary.json provides:

{
  "critical_alerts": [],
  "high_priority": [],
  "medium_priority": [],
  "pharmacogenomics_alerts": [],
  "apoe_status": {},
  "polygenic_risk_scores": {},
  "haplogroups": {
    "mtDNA": {"haplogroup": "H", "lineage": "maternal"},
    "Y_DNA": {"haplogroup": "R1b", "lineage": "paternal"}
  },
  "ancestry": {
    "composition": {},
    "admixture": {}
  },
  "hereditary_cancer": {},
  "autoimmune_risk": {},
  "pain_sensitivity": {},
  "lifestyle_recommendations": {
    "diet": [],
    "exercise": [],
    "supplements": [],
    "avoid": []
  },
  "drug_interaction_matrix": {},
  "data_quality": {}
}

Critical Findings (Always Alert User)

Pharmacogenomics

  • DPYD variants - 5-FU/capecitabine FATAL toxicity risk
  • HLA-B*5701 - Abacavir hypersensitivity
  • HLA-B*1502 - Carbamazepine SJS (certain populations)
  • MT-RNR1 - Aminoglycoside-induced deafness

Hereditary Cancer

  • BRCA1/BRCA2 pathogenic - Breast/ovarian cancer syndrome
  • Lynch syndrome genes - Colorectal/endometrial cancer
  • TP53 pathogenic - Li-Fraumeni syndrome (multi-cancer)

Disease Risk

  • APOE ε4/ε4 - ~12x Alzheimer's risk
  • Factor V Leiden - Thrombosis risk, contraceptive implications
  • HLA-B27 - Ankylosing spondylitis susceptibility (OR ~70)

Carrier Status

  • CFTR - Cystic fibrosis (1 in 25 Europeans)
  • HBB - Sickle cell (1 in 12 African Americans)
  • HEXA - Tay-Sachs (1 in 30 Ashkenazi Jews)

Usage Examples

Basic Analysis

from comprehensive_analysis import main
main()  # Uses command line args

Haplogroup Analysis

from markers.haplogroups import analyze_haplogroups
result = analyze_haplogroups(genotypes)
print(result["mtDNA"]["haplogroup"])  # e.g., "H"

Ancestry

from markers.ancestry_composition import get_ancestry_summary
ancestry = get_ancestry_summary(genotypes)

Cancer Panel

from markers.cancer_panel import analyze_cancer_panel
cancer = analyze_cancer_panel(genotypes)
if cancer["pathogenic_variants"]:
    print("ALERT: Pathogenic variants detected")

Generate PDF

from pdf_report import generate_pdf_report
pdf_path = generate_pdf_report(analysis_results)

Export for Genetic Counselor

from exports import generate_genetic_counselor_export
clinical = generate_genetic_counselor_export(results, "clinical.json")

Privacy

  • All analysis runs locally
  • Zero network requests
  • No data leaves the machine

Limitations

  • Consumer arrays miss rare variants (~0.1% of genome)
  • Results are probabilistic, not deterministic
  • Not a medical diagnosis
  • Most conditions 50-80% non-genetic
  • Consult healthcare providers for medical decisions
  • Negative hereditary cancer result does NOT rule out cancer syndrome
  • Haplogroup resolution limited without WGS

When to Recommend Genetic Counseling

  • Any pathogenic hereditary cancer variant
  • APOE ε4/ε4 genotype
  • Multiple critical pharmacogenomic findings
  • Carrier status with reproduction implications
  • High-risk autoimmune HLA types with symptoms
  • Results causing significant user distress