← Back to AI & LLMs
AI & LLMs by @datadrivenconstruction

pandas-construction-analysis

Comprehensive Pandas

0
Source Code

Pandas Construction Data Analysis

Overview

Based on DDC methodology (Chapter 2.3), this skill provides comprehensive Pandas operations for construction data processing. Pandas is the Swiss Army knife for data analysts - handling everything from simple data filtering to complex aggregations across millions of rows.

Book Reference: "Pandas DataFrame и LLM ChatGPT" / "Pandas DataFrame and LLM ChatGPT"

"Используя Pandas, вы можете управлять и анализировать наборы данных, намного превосходящие возможности Excel. В то время как Excel способен обрабатывать до 1 миллиона строк данных, Pandas может без труда работать с наборами данных, содержащими десятки миллионов строк." — DDC Book, Chapter 2.3

Quick Start

import pandas as pd

# Read construction data
df = pd.read_excel("bim_export.xlsx")

# Basic operations
print(df.head())           # First 5 rows
print(df.info())           # Column types and memory
print(df.describe())       # Statistics for numeric columns

# Filter structural elements
structural = df[df['Category'] == 'Structural']

# Calculate total volume
total_volume = df['Volume'].sum()
print(f"Total volume: {total_volume:.2f} m³")

DataFrame Fundamentals

Creating DataFrames

import pandas as pd

# From dictionary (construction elements)
elements = pd.DataFrame({
    'ElementId': ['E001', 'E002', 'E003', 'E004'],
    'Category': ['Wall', 'Floor', 'Wall', 'Column'],
    'Material': ['Concrete', 'Concrete', 'Brick', 'Steel'],
    'Volume_m3': [45.5, 120.0, 32.0, 8.5],
    'Level': ['Level 1', 'Level 1', 'Level 2', 'Level 1']
})

# From CSV
df_csv = pd.read_csv("construction_data.csv")

# From Excel
df_excel = pd.read_excel("project_data.xlsx", sheet_name="Elements")

# From multiple Excel sheets
all_sheets = pd.read_excel("project.xlsx", sheet_name=None)  # Dict of DataFrames

Data Types in Construction

# Common data types for construction
df = pd.DataFrame({
    'element_id': pd.Series(['W001', 'W002'], dtype='string'),
    'quantity': pd.Series([10, 20], dtype='int64'),
    'volume': pd.Series([45.5, 32.0], dtype='float64'),
    'is_structural': pd.Series([True, False], dtype='bool'),
    'created_date': pd.to_datetime(['2024-01-15', '2024-01-16']),
    'category': pd.Categorical(['Wall', 'Slab'])
})

# Check data types
print(df.dtypes)

# Convert types
df['quantity'] = df['quantity'].astype('float64')
df['volume'] = pd.to_numeric(df['volume'], errors='coerce')

Filtering and Selection

Basic Filtering

# Single condition
walls = df[df['Category'] == 'Wall']

# Multiple conditions (AND)
large_concrete = df[(df['Material'] == 'Concrete') & (df['Volume_m3'] > 50)]

# Multiple conditions (OR)
walls_or_floors = df[(df['Category'] == 'Wall') | (df['Category'] == 'Floor')]

# Using isin for multiple values
structural = df[df['Category'].isin(['Wall', 'Column', 'Beam', 'Foundation'])]

# String contains
insulated = df[df['Description'].str.contains('insulated', case=False, na=False)]

# Null value filtering
incomplete = df[df['Cost'].isna()]
complete = df[df['Cost'].notna()]

Advanced Selection

# Select columns
volumes = df[['ElementId', 'Category', 'Volume_m3']]

# Query syntax (SQL-like)
result = df.query("Category == 'Wall' and Volume_m3 > 30")

# Loc and iloc
specific_row = df.loc[0]                    # By label
range_rows = df.iloc[0:10]                  # By position
specific_cell = df.loc[0, 'Volume_m3']      # Row and column
subset = df.loc[0:5, ['Category', 'Volume_m3']]  # Range with columns

Grouping and Aggregation

GroupBy Operations

# Basic groupby
by_category = df.groupby('Category')['Volume_m3'].sum()

# Multiple aggregations
summary = df.groupby('Category').agg({
    'Volume_m3': ['sum', 'mean', 'count'],
    'Cost': ['sum', 'mean']
})

# Named aggregations (cleaner output)
summary = df.groupby('Category').agg(
    total_volume=('Volume_m3', 'sum'),
    avg_volume=('Volume_m3', 'mean'),
    element_count=('ElementId', 'count'),
    total_cost=('Cost', 'sum')
).reset_index()

# Multiple grouping columns
by_level_cat = df.groupby(['Level', 'Category']).agg({
    'Volume_m3': 'sum',
    'Cost': 'sum'
}).reset_index()

Pivot Tables

# Create pivot table
pivot = pd.pivot_table(
    df,
    values='Volume_m3',
    index='Level',
    columns='Category',
    aggfunc='sum',
    fill_value=0,
    margins=True,           # Add totals
    margins_name='Total'
)

# Multiple values
pivot_detailed = pd.pivot_table(
    df,
    values=['Volume_m3', 'Cost'],
    index='Level',
    columns='Category',
    aggfunc={'Volume_m3': 'sum', 'Cost': 'mean'}
)

Data Transformation

Adding Calculated Columns

# Simple calculation
df['Cost_Total'] = df['Volume_m3'] * df['Unit_Price']

# Conditional column
df['Size_Category'] = df['Volume_m3'].apply(
    lambda x: 'Large' if x > 50 else ('Medium' if x > 20 else 'Small')
)

# Using np.where for binary conditions
import numpy as np
df['Is_Large'] = np.where(df['Volume_m3'] > 50, True, False)

# Using cut for binning
df['Volume_Bin'] = pd.cut(
    df['Volume_m3'],
    bins=[0, 10, 50, 100, float('inf')],
    labels=['XS', 'S', 'M', 'L']
)

String Operations

# Extract from strings
df['Level_Number'] = df['Level'].str.extract(r'(\d+)').astype(int)

# Split and expand
df[['Building', 'Floor']] = df['Location'].str.split('-', expand=True)

# Clean strings
df['Category'] = df['Category'].str.strip().str.lower().str.title()

# Replace values
df['Material'] = df['Material'].str.replace('Reinforced Concrete', 'RC')

Date Operations

# Parse dates
df['Start_Date'] = pd.to_datetime(df['Start_Date'])

# Extract components
df['Year'] = df['Start_Date'].dt.year
df['Month'] = df['Start_Date'].dt.month
df['Week'] = df['Start_Date'].dt.isocalendar().week
df['DayOfWeek'] = df['Start_Date'].dt.day_name()

# Calculate duration
df['Duration_Days'] = (df['End_Date'] - df['Start_Date']).dt.days

# Filter by date range
recent = df[df['Start_Date'] >= '2024-01-01']

Merging and Joining

Merge DataFrames

# Elements data
elements = pd.DataFrame({
    'ElementId': ['E001', 'E002', 'E003'],
    'Category': ['Wall', 'Floor', 'Column'],
    'Volume_m3': [45.5, 120.0, 8.5]
})

# Unit prices
prices = pd.DataFrame({
    'Category': ['Wall', 'Floor', 'Column', 'Beam'],
    'Unit_Price': [150, 80, 450, 200]
})

# Inner join (only matching)
merged = elements.merge(prices, on='Category', how='inner')

# Left join (keep all elements)
merged = elements.merge(prices, on='Category', how='left')

# Join on different column names
result = df1.merge(df2, left_on='elem_id', right_on='ElementId')

Concatenating DataFrames

# Vertical concatenation (stacking)
all_floors = pd.concat([floor1_df, floor2_df, floor3_df], ignore_index=True)

# Horizontal concatenation
combined = pd.concat([quantities, costs, schedule], axis=1)

# Append new rows
new_elements = pd.DataFrame({'ElementId': ['E004'], 'Category': ['Beam']})
df = pd.concat([df, new_elements], ignore_index=True)

Construction-Specific Analyses

Quantity Take-Off (QTO)

def generate_qto_report(df):
    """Generate Quantity Take-Off summary by category"""
    qto = df.groupby(['Category', 'Material']).agg(
        count=('ElementId', 'count'),
        total_volume=('Volume_m3', 'sum'),
        total_area=('Area_m2', 'sum'),
        avg_volume=('Volume_m3', 'mean')
    ).round(2)

    # Add percentage column
    qto['volume_pct'] = (qto['total_volume'] /
                          qto['total_volume'].sum() * 100).round(1)

    return qto.sort_values('total_volume', ascending=False)

# Usage
qto_report = generate_qto_report(df)
qto_report.to_excel("qto_report.xlsx")

Cost Estimation

def calculate_project_cost(elements_df, prices_df, markup=0.15):
    """Calculate total project cost with markup"""
    # Merge with prices
    df = elements_df.merge(prices_df, on='Category', how='left')

    # Calculate base cost
    df['Base_Cost'] = df['Volume_m3'] * df['Unit_Price']

    # Apply markup
    df['Total_Cost'] = df['Base_Cost'] * (1 + markup)

    # Summary by category
    summary = df.groupby('Category').agg(
        volume=('Volume_m3', 'sum'),
        base_cost=('Base_Cost', 'sum'),
        total_cost=('Total_Cost', 'sum')
    ).round(2)

    return df, summary, summary['total_cost'].sum()

# Usage
detailed, summary, total = calculate_project_cost(elements, prices)
print(f"Project Total: ${total:,.2f}")

Material Summary

def material_summary(df):
    """Summarize materials across project"""
    summary = df.groupby('Material').agg({
        'Volume_m3': 'sum',
        'Weight_kg': 'sum',
        'ElementId': 'nunique'
    }).rename(columns={'ElementId': 'Element_Count'})

    summary['Volume_Pct'] = (summary['Volume_m3'] /
                              summary['Volume_m3'].sum() * 100).round(1)

    return summary.sort_values('Volume_m3', ascending=False)

Level-by-Level Analysis

def analyze_by_level(df):
    """Analyze construction quantities by building level"""
    level_summary = df.pivot_table(
        values=['Volume_m3', 'Cost'],
        index='Level',
        columns='Category',
        aggfunc='sum',
        fill_value=0
    )

    level_summary['Total_Volume'] = level_summary['Volume_m3'].sum(axis=1)
    level_summary['Total_Cost'] = level_summary['Cost'].sum(axis=1)

    return level_summary

Data Export

Export to Excel with Multiple Sheets

def export_to_excel_formatted(df, summary, filepath):
    """Export with multiple sheets"""
    with pd.ExcelWriter(filepath, engine='openpyxl') as writer:
        df.to_excel(writer, sheet_name='Details', index=False)
        summary.to_excel(writer, sheet_name='Summary')

        pivot = pd.pivot_table(df, values='Volume_m3',
                               index='Level', columns='Category')
        pivot.to_excel(writer, sheet_name='By_Level')

# Usage
export_to_excel_formatted(elements, qto_summary, "project_report.xlsx")

Export to CSV

# Basic export
df.to_csv("output.csv", index=False)

# With encoding for special characters
df.to_csv("output.csv", index=False, encoding='utf-8-sig')

# Specific columns
df[['ElementId', 'Category', 'Volume_m3']].to_csv("volumes.csv", index=False)

Performance Tips

# Use categories for string columns with few unique values
df['Category'] = df['Category'].astype('category')

# Read only needed columns
df = pd.read_csv("large_file.csv", usecols=['ElementId', 'Category', 'Volume'])

# Use chunking for very large files
chunks = pd.read_csv("huge_file.csv", chunksize=100000)
result = pd.concat([chunk[chunk['Category'] == 'Wall'] for chunk in chunks])

# Check memory usage
print(df.memory_usage(deep=True).sum() / 1024**2, "MB")

Quick Reference

Operation Code
Read Excel pd.read_excel("file.xlsx")
Read CSV pd.read_csv("file.csv")
Filter rows df[df['Column'] == 'Value']
Select columns df[['Col1', 'Col2']]
Group and sum df.groupby('Cat')['Vol'].sum()
Pivot table pd.pivot_table(df, values='Vol', index='Level')
Merge df1.merge(df2, on='key')
Add column df['New'] = df['A'] * df['B']
Export Excel df.to_excel("out.xlsx", index=False)

Resources

Next Steps

  • See llm-data-automation for generating Pandas code with AI
  • See qto-report for specialized QTO calculations
  • See cost-estimation-resource for detailed cost calculations