Source Code
Context Pruner
Advanced context management optimized for DeepSeek's 64k context window. Provides intelligent pruning, compression, and token optimization to prevent context overflow while preserving important information.
Key Features
- DeepSeek-optimized: Specifically tuned for 64k context window
- Adaptive pruning: Multiple strategies based on context usage
- Semantic deduplication: Removes redundant information
- Priority-aware: Preserves high-value messages
- Token-efficient: Minimizes token overhead
- Real-time monitoring: Continuous context health tracking
Quick Start
Auto-compaction with dynamic context:
import { createContextPruner } from './lib/index.js';
const pruner = createContextPruner({
contextLimit: 64000, // DeepSeek's limit
autoCompact: true, // Enable automatic compaction
dynamicContext: true, // Enable dynamic relevance-based context
strategies: ['semantic', 'temporal', 'extractive', 'adaptive'],
queryAwareCompaction: true, // Compact based on current query relevance
});
await pruner.initialize();
// Process messages with auto-compaction and dynamic context
const processed = await pruner.processMessages(messages, currentQuery);
// Get context health status
const status = pruner.getStatus();
console.log(`Context health: ${status.health}, Relevance scores: ${status.relevanceScores}`);
// Manual compaction when needed
const compacted = await pruner.autoCompact(messages, currentQuery);
Archive Retrieval (Hierarchical Memory):
// When something isn't in current context, search archive
const archiveResult = await pruner.retrieveFromArchive('query about previous conversation', {
maxContextTokens: 1000,
minRelevance: 0.4,
});
if (archiveResult.found) {
// Add relevant snippets to current context
const archiveContext = archiveResult.snippets.join('\n\n');
// Use archiveContext in your prompt
console.log(`Found ${archiveResult.sources.length} relevant sources`);
console.log(`Retrieved ${archiveResult.totalTokens} tokens from archive`);
}
Auto-Compaction Strategies
- Semantic Compaction: Merges similar messages instead of removing them
- Temporal Compaction: Summarizes older conversations by time windows
- Extractive Compaction: Extracts key information from verbose messages
- Adaptive Compaction: Chooses best strategy based on message characteristics
- Dynamic Context: Filters messages based on relevance to current query
Dynamic Context Management
- Query-aware Relevance: Scores messages based on similarity to current query
- Relevance Decay: Relevance scores decay over time for older conversations
- Adaptive Filtering: Automatically filters low-relevance messages
- Priority Integration: Combines message priority with semantic relevance
Hierarchical Memory System
The context archive provides a RAM vs Storage approach:
- Current Context (RAM): Limited (64k tokens), fast access, auto-compacted
- Archive (Storage): Larger (100MB), slower but searchable
- Smart Retrieval: When information isn't in current context, efficiently search archive
- Selective Loading: Extract only relevant snippets, not entire documents
- Automatic Storage: Compacted content automatically stored in archive
Configuration
{
contextLimit: 64000, // DeepSeek's context window
autoCompact: true, // Enable automatic compaction
compactThreshold: 0.75, // Start compacting at 75% usage
aggressiveCompactThreshold: 0.9, // Aggressive compaction at 90%
dynamicContext: true, // Enable dynamic context management
relevanceDecay: 0.95, // Relevance decays 5% per time step
minRelevanceScore: 0.3, // Minimum relevance to keep
queryAwareCompaction: true, // Compact based on current query relevance
strategies: ['semantic', 'temporal', 'extractive', 'adaptive'],
preserveRecent: 10, // Always keep last N messages
preserveSystem: true, // Always keep system messages
minSimilarity: 0.85, // Semantic similarity threshold
// Archive settings
enableArchive: true, // Enable hierarchical memory system
archivePath: './context-archive',
archiveSearchLimit: 10,
archiveMaxSize: 100 * 1024 * 1024, // 100MB
archiveIndexing: true,
// Chat logging
logToChat: true, // Log optimization events to chat
chatLogLevel: 'brief', // 'brief', 'detailed', or 'none'
chatLogFormat: '๐ {action}: {details}', // Format for chat messages
// Performance
batchSize: 5, // Messages to process in batch
maxCompactionRatio: 0.5, // Maximum 50% compaction in one pass
}
Chat Logging
The context optimizer can log events directly to chat:
// Example chat log messages:
// ๐ Context optimized: Compacted 15 messages โ 8 (47% reduction)
// ๐ Archive search: Found 3 relevant snippets (42% similarity)
// ๐ Dynamic context: Filtered 12 low-relevance messages
// Configure logging:
const pruner = createContextPruner({
logToChat: true,
chatLogLevel: 'brief', // Options: 'brief', 'detailed', 'none'
chatLogFormat: '๐ {action}: {details}',
// Custom log handler (optional)
onLog: (level, message, data) => {
if (level === 'info' && data.action === 'compaction') {
// Send to chat
console.log(`๐ง Context optimized: ${message}`);
}
}
});
Integration with Clawdbot
Add to your Clawdbot config:
skills:
context-pruner:
enabled: true
config:
contextLimit: 64000
autoPrune: true
The pruner will automatically monitor context usage and apply appropriate pruning strategies to stay within DeepSeek's 64k limit.